Simultaneous vs. Non-simultaneous Blow-up in Numerical Approximations of a Parabolic System with Nonlinear Boundary Conditions

نویسندگان

  • G. ACOSTA
  • J. FERNÁNDEZ BONDER
  • P. GROISMAN
  • J. D. ROSSI
چکیده

We study the asymptotic behavior of a semidiscrete numerical approximation for a pair of heat equations ut = ∆u, vt = ∆v in Ω × (0, T ); fully coupled by the boundary conditions ∂u ∂η = up11vp12 , ∂v ∂η = up21vp22 on ∂Ω× (0, T ), where Ω is a bounded smooth domain in Rd. We focus in the existence or not of non-simultaneous blow-up for a semidiscrete approximation (U, V ). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 − 1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

An adaptive numerical method to handle blow-up in a parabolic system

We study numerical approximations to solutions of a system of two nonlinear diffusion equations in a bounded interval, coupled at the boundary in a nonlinear way. In certain cases the system develops a blow-up singularity in finite time. Fixed mesh methods are not well suited to approximate the problem near the singularity. As an alternative to reproduce the behaviour of the continuous solution...

متن کامل

A note on blow-up in parabolic equations with local and localized sources

‎This note deals with the systems of parabolic equations with local and localized sources involving $n$ components‎. ‎We obtained the exponent regions‎, ‎where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data‎. ‎It is proved that different initial data can lead to different blow-up phenomena even in the same ...

متن کامل

Non-simultaneous Blow-up for a Semilinear Parabolic System with Nonlinear Memory

In this note, we study the possibility of non-simultaneous blow-up for positive solutions to the following system,

متن کامل

Incomplete quenching in a system of heat equations coupled at the boundary

In this paper we find a possible continuation for quenching solutions to a system of heat equations coupled at the boundary condition. This system exhibits simultaneous and non-simultaneous quenching. For non-simultaneous quenching our continuation is a solution of a parabolic problem with Neumann boundary conditions. We also give some results for simultaneous quenching and present some numeric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001